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NONLINEAR OPTIMAL TRAJECTORIES USING SUCCESSIVE LINEARIZATION*

Calvin Hecht™
The Aerospace Corporation
El Segundo, California

Abstract

A method of designing trajectories for maneu-
vering reentry vehicles is developed in this paper.
Optimal control theory using linear perturbation
guidance and a quadratic penalty function is
employed to design trajectories for these vehicles.
The vehicle equations of motion are represented
by a five-dimension state vector. The problem is
formulated by linearizing about a reference tra-
jectory. A linear servomechanism problem,
rather than a regulator problem, is golved, lead-
ing to a Riccati matrix differential equation and an
auxiliary vector differential equation which are
solved backwards in time. Successive lineariza-
tion consists of iteratively generating new trajec-
tories by linearizing about a reference trajectory
created from a prior iteration. The cost function
is adjusted between iterations to shape the trajec-
tory. Qualitative guidelines for selecting these
cost functions are given. Test cases are shown,
with emphasis on designing a trajectery to inter-
cept a target point,

Introduction

The objective of this paper is to investigate the
application of optimal control theory to design
trajectories for maneuvering reentry vehicles.
The trajectory must satisfy specified conditions,
and possibly be optimal in some sense. A general
formulation of the problem leads to the Euler-
Lagrange equations, which are two-point boundary
value problems, or the Hamilton-Jacoby-Bellman
partial differential equation,

Much of the recently publirhed research related
to maneuvering reentry vehicles is concerned with
determining an optimal control to enable tf\e3
vehicle to follow a prescribed trajectory. *7~. The
methods used for solving these trajectory-following
problems are variations of the perturbation guid-
ance schemes discuss%d in Bryson and Ho and in
various other texts, 4-> The basic perturbation
guidance scheme is concerned with time-varying
linear systems with quadratic performance criteria
and small deviations from a nominal solution,

The specified conditions for an optimal trajec-
tory are given in terms of terminal conditions,
For accuracy trajectoriss, the ‘mpact point and
final flight path angle are specified. Efficient
flight path shaping leads to steecper terminal flight
path angles, which reduce navigation errors,
Range extension and evasion trajectories can also
be specified by the terminal conditions, In each
cage, the initial conditions are fixed. The one
variable that needs attention throughout the entire
flight is the control vector, since its magnitude is
required to not exceed specified values and it plays
an important role in determining total flight time
and final velocity,

Specifying only terminal conditions allowed the
use of an extended linear perturbation approach
with quadratic performance criteria. The desired
trajectory is significantly differant from an initially
available nominal or reference trajectory. There-~
fore, an iterative approach, or a sequence of tra-
jectories, can be developed, each trajectory being
a reference nominal for the subsequent iteration.

The iterative method of successively generating
and linearizing about nenlinear trajectories as
described in this paper permits penalty factors of
the quadratic cost function to be adjusted between
iterations for the purpose of shaping the final tra-
jectory to meet the required goals and to ensure
convergence if necessary. The method of succes-
sive linearization is similar to the method of
quasilinearization, or generalized Newton~-Raphson
approach. 5-0 There is an advantage for the method
described in this paper, however: direct access of
intermediate computations is available, enabling

the iterative adjustments of the problem parameters.

The second section of this paper briefly sum-
marizes the applicable linear perturbation theory,
including the servomechanism technique, The
nonlinear and linearized equations of motion are
given, and the section concludes with a more
detailed description of the successive linearization
method. The third section contains a discussion of
the evaluation of the weighting matrices, The last
section contains descriptions of test cases to
further illustrate the method and to demonstrate its
usefulness,

Linear Perturbation Theory

Linear Servomechanism Technique

The nonlinear differential equations describing
the vehicle motion are given by

x = f{x, u) (1

with x the state vector, u the control vector, and f
a vector valued function of the state and control.
Linearizing about a nominal state and control func-
tion, x4(t) and ug{t), and defining
6x = x - X, )

{2)
du :u-uos

gives

§x = Fox+ G bu (3)

F and G are time-varying Jacobian matrices whose
elements 1ij and gij are given by

*Thls work was supported by Contract No, F04701-76-C-0077, SAMSO, Air Force Systems Command,

Los Angeles, California.

**Member of the Technical Staff, Guidance and Control Division, Member AIAA.
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afi(x' uw)

fij = axj
8£1(x. u) (4)
gi.j = 8uj

where fi, %i, and u; are the components of their
rupect}ve ectors, and where f{;; and gjj are
evaluated along a nominal or reférence trajectory.

The objective of the optimization process is to
generate a trajectory which has specified desirable
properties. For the reentry vehicle trajectory
problems discussed in this paper, the terminal
conditions are specified. Designating this desired
terminal state n(tg), we formulate the problem by
minimizing the quadratic cosat function

J = %—{Héx(tf) - ("l(tf) - "o(tf))Hg

te
ﬂ[ WMME+MMm&d% (5)
(2]

The first term of Eq. (5) represents the penalty
for a deviation from the desired terminal state at
tha final time. The elements of the S matrix,
therefore, would be much larger than the corres-
ponding elements of the Q matrix, The first term
inside of the integral sign represents a penalty for
deviations of the perturbed trajectory from the
nominal trajectory. Since the desired trajectory
is not necessarily close to the nominal, Q would
normally be small. However, this term needs
gsome weighting to keep the perturbed trajectory
close to the nominal to allow the linear perturba-
tion approximations to be valid, The second term
inside of the integral eign represents the penalty
for control variations about the nominal, and needs
to be weighted to ensure that the control does not
exceed specified bounda,

A solution to the minimization problem stated

in Eq. (5) is given in Sage, > Page 96, or Bryson
and Ho, 4 Chapter 5, The solution is

u = - R G'(P bx - £) (6)
with the matrix P(t) and vector §{(t) given by

.PF-F' P+PGRY G P-Q

b=
{7
P(t,) = S
£=(-F +PGR™ I a")¢
(8)
fep) = 8{nltp - x ()

where prime (/) denotes transpose,

Equation (7) is the same Riccati equ.tion
obtained for the linear regulator problem, and
Eq. (8) is an auxiliary equation needed for the
servomeéchanism problem.

The algorithm for solving the linearized servo-
mochaniam problem ia as follows:

1. Generate a nominal trajectory xq(t) with a
nominal control u,(t), and compute and store the
F(t) and G(t) matrices.

2, Initialize P and £ at the terminal time,
according to Egs, (7) and (8), and integrate back-
wards from tf to t,. Compute and store the gain
matrix

1

K=R aP (9)

and control vector

k = R7! c’t (10)

3. Initialize x(ty) and integrate Eq. (1) forward
in time with

u=-K6x+k+u° (11)

with 6x = x - x, to obtain x(t), a nonlinear solution,
and an optimal linearized control u(t).

System Description, Linearized
Equations of Motion

The coordinate system used to describe the
equations of motion was centered on the surface of
a flat, nonrotating earth, with x pointing down-
range, y crossrange, and z positive upward along
the local vertical and passing through the vehicle
at time equals zero. The point mass representa-
tion of the vehicle is shown in Figure 1. The
state equations were

X = 8 cos Yy CO8 Y (12)
y = scosy siny (13)
z = -8 8iny (14)
. C u
= g2 L 1
v 19w 5 cos Y (15)
C
. s . é. L
Y= am Ry, (16)
{ ALYITUDE

-~ VEHICLE AT o

DOWNRANGE X ===

Y CROSSRANGE

U nxy plane

veLocity vy in 7 velocity veclor piane

Figure 1, Coordinate definition.
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g = - q% Cpluys u,) (17)
with
X,Y,2 = the position coordinates of the
vehicle
¢,y = two angles defining the velocity
vectoy
8 = vehicle speed
u), uy = control components
q = dynamic pressure = (1/2)ps®
A/m = reference area to mass ratio
Cy, = glope of the lift coefficient
CD(“lr“z) = nonlinear drag coefficient
P = air density = 4, exp (-z/hy)
Py hg = constants defining air density

approximation

The control components u; and up are the com-
ponents of angle of attack. ’I‘he direction of the
force agsociated with angle of attack is shown in
Figure !. This model is applicable to either a
cruciform configuration vehicle or a bank-to-turn
vehicle with negligibly small autopilot time
constants.

There is no direct control of the speed, The
atate model X was therefore represented by the
five-state vector

%
y
z
¥
Y

The speed equation {17) was used for the solution
of the nonlinear state aquations (12) through (16},
but was not considered an element of the state
vactor for the purpose of solving the linearized
squations.

The F and G matrices, given in Eqas. (3) and
(4) for the linearized model, were dimensioned,
respectively, (5 » 5) and (5 x 2}, with all of the
elements equal to zero except thuse listed.

fH = -8 cosysiny
flS = -~ g cos Painy

f,4 = 8coaycosy

¥
'

f,6 % - 8 sin ¢ siny

f35 = - 8 COBY

1
f43 -Clen, ﬁxp(-‘/llu)m

(18)

ginY

#

C|su exp (»z/ha)
cos”y

-
H

. 1
53 Cl 5 u, axp(-z/hs)x—;

}
C1 8 exp (-Z/hs) .(:—6_8—7

hH

= -C 8 exp(-z/hs) (18)
cont
with the constant C; = (1/2) CL(A/m)pO.

The linsarized perturbation differential equation
is give . by Eq. (3) with

—

0 00 £, f,
0 0 0 £, £
F={0 0 0 0 i (19)
0 0 f; 0  f
L0 0 f5, O 0
[~ 0 0]
0 0
G =| o0 0 (20)
gy O
| 0 g5

The gain matrix K, Eq. (9), and control vec-
tor k, Eq. (10), are, respectively, a (5 x 2)
matrix and a two-dimension vector,

Successive Linearization Technigue

The successive linearization method 1teratively
applies the alyorithm described in the preceding
section, with the nominal trajectory and contro!l
for each iteration being the solution of the prior
iteration,

The asrodynamically controlled reentry vehicle
problems discussed in this paper were started
with the nominal control ugy(t) = 0. After an initial
refarence trajectory is generated with this control,
a perturbed trajectory is generated using an
optimal controller derived from the linearized
equations and the initial cost function penalty
matrices, When thia first pass is completed, we
have a perturbed reference trajectory x,(t) and a
nominal u (t) # 0. A control, u(t), associated with
a trajectory X(t) that haa the required apecified
properties can be obtained by a judicious selection
of the weighting matrices Q, R, and S,

The process ia illustrated in Figure 2. The
technique for the selection of the weighting
matrices is described in the next section,

The gain matrix K and the auxiliary control
vectar k for each iteration are related to the
selected weighting matrices Q, R, and S; Eqa. (7)
through (10), A qualitative relationship between the
weighting rnatrices and the defined performance
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Figure 2. Successive linearization technique,

criterion can be developed, The weighting matrices
can then be changed between iterations, based on
the measured conditions, to achieve the desired
performance. Specific methods for shaping the
trajectories of the reentry vehicle are shown in

the sections on ''Evaluation of thie Weighting
Matrices' and the "Test Cases. "

Evaluation of Weighting Matrices Q, R, S

The performance of the vehicle, as character-
ized by the shape of the final trajectory, is deter-
mined by the values of the Q, R, and S matriceas,
No general analytic method is avallable for com-
puting these matrices for the tigne varying system
described., Sworder and Welle” demonstrate an
analytic approach which can be used when making
certain simplying assumptions, and de Virgilio,
Wells, and Schiring! suggest a procedure for
dotermining these matrices, The commonly used

rule-of-thumb method, suggested by Bryson and
Ho, 4 is to proportion the weights according to the
reciprocal of the aquares of the maximum accept-
able deviation from the nominal,

S" = n X maximum acceptable value of
x(t;) x’ (t,)

O
u

n X (tf - to)X maximum acceptable
value of x(t) x' {t)

o
1l

r X (tf - t.) X maximum acceptable
value of ut) w (t).

with n the state vector dimension, r the control
vector dimension, and (tf - to) the limits of inte-
gration of the cost function, Eq. (5).

The trajectories developed using the method
described in this paper were not necessarily
concerned with roinimizing a deviation from a
reference. The relationship between the solu-
tion and the weighting matrices is roughly
governed by the inverse square law, and this
information was used to aid in choosing the value
for the weighting matrices,

The qualitative effect of the weighting matrices
on the shape of the final trajectory can easily be
determined by referring to the cost function,

Eq., {5): large Q tending to hold the perturbed
trajectory close to the reference; large R tending
to reduce the amount of control; and large S tend-
ing to reduce the error between the perturbed
final state and the target point, Other trajectory
properties have been specified, which also must
be controlled with Q, R, S selection: the total
time of flight and the final velocity, These rela-
tionghips are shown in Table 1, which gives quali-
tative guidelines for adjusting the weighting
matrices from one iteration to the next.

Because the desired trajectory is generally not
close to the reference trajectory, Q should be asg
amall as practical, Q must be at least positive
semi-definite, The Q inatrix functions as a stabj-
lizing controller, and generally needs small posi«
tive numbers on the diagonal to ensure a stable
solution, The desired trajectory must come close
to the target point, suggesting large positive num-
bers for the S matrix,

Experience has shown the chief influence on the
shape of the trajectory is the relative weighting of
the elements of the S matrix, Eassentially, the per-
turbed trajectory will terminate much closer to the
target point than the nonmaneuvering impact point
on the first iteration., The relative weights on the
terminal position components and flight path angle,
although having second order eifects on the final
utate, appear to strongly influence ths trajectory
shape. These component weightings can be ade-
quately accomplished by manipulating the diagonal
components, with the off-diagonal elements set
equal to zero,

The control vector u is subject to a direct and
an indirect hard constraint. The direct constraint
is Umax u where

NERY

1/2
with{u| = (uf +“§) .

max u (2”
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Table I. Qualitative relationships for adjusting 112
weighting matrices.
Matrix Adjustment
Objective

. Q R H]

Fr 8u
Follow I rease Increase Decrease U
Reference UU s
Intercept Decrease Decrease Increase U
Target

U

Reduce Decrease Increase Decrease
Control
Decrease Increasc if per- Increase if per- Increase altitude RAMUS = umax
Time of turbed trajec- turbed trajec- component;
Flight tory is longer tory is longer decrease hori-

than nonmaneu- than nonmaneu- zontal compo-

vering trajec- vering trajec- nents, Compo-

tory; decr.-ase  tory; decrease nent refers to

otherwise. otherwise, diagonal element

of matrix. u 3 U
S

Increase Increase if per« Increase if per- Increase altitude — 1 y = 1
Terminal turbed trajec- turbed trajec- component; u= U S— u
Speed tory terminal tory terminal decreasc hori- 2 S

spced is lower  speed is lower zontal compo- 2

than nonmapeu- than nonmaneu- nents. Compo-

vering trajec- vering trajec- nent refers to

tory; decrease tory; decrease diagonal element lF ‘U l > Umax

otherwise. otherwise, of matrix. 51,

u
" max
The control must also limit the normal accel- i IUSI Us.
i

eration to an acceptable value, ap .. The accel-
eration is given by
Figure 3. Scaling the control when

q CL u ( 1 exceeding the constraint.
a = lwraz) 3 (22)
g g 8) 2
Us
with it new - \W__ Tu (25)
- 3 3 1)
ag = acceleration in g's with
q = dynamic pressure T = diagonal element of R matrix
C = slope of the lift coefficient -
1L pe ¢ T new - ith diagonal element of R matrix for
W/Ag= mass to reference area ratio the next iteration
g - gravity u, = u, + bu
The indirect constraint is As zhown in Figure 3, ug is the total control from ~
the linear formulas when u, + 8u exceeds uy,,,. =
i“l S W axa Test Cases
h The procedures described in this paper were
wit used to generate trajectories designed to achieve
various objectives, Two sample cases are de-
= (__W_)_l A a (23) scribed in this section. The descriptions are for
max a q CL max the purpose of illustrating the technique and demonw
strating the types of results that can be obtained. 3
Then, Numerical results are given in terms of normal-
. (24) ized data: linear distances are refercnced to h, i
Ynax S Ymax v’ %maxa the initial altitude, and angles are referenced to
Q= Umax y» the maximuem angle of attack, = 3
The total control (nominal plus perturbed) is Specified Target and Terminal Flight Path :

tested at each point along the trajectory, If it
exceeds u. .., it is limited as shown in Figure 3, :
and the R matrix is modified for the next iteration A basic trajectory is one that has a fixed initial :
according to ) state, impacts at a specified location, approaches

Angle —No Accelcration Constraint

FVehicle parameters and aerodynamic data for the evaluation of the trajectory generation scheme were
similar to the examples used in an unclassified report with unlimited distribution,}

9
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the tavget along a speelfled diveline (torminal 1 L 1T
flight path angle), and svintmines control affort, N s 11
The minkmum control etlfort atde in achleving Wit “:\‘ﬂ\.’_ 17T
the additional uh{wuwu of increased tarminal %06 ILL TN
valoally and minlmum Oight time (see Tabla 1), A N
Gonditions for thie cave and computed results are E’“ IR SRR
linted in Table &, l*‘s.‘u ran 4 theough 14 are AR NS TN
compiter-ganaratad plote of trajoctory data, 02 : -
The weighting on poaition deviations alonp the -
trajectory wan aoea,  Waighting on the angles 0 . ) 111 -+
alang the tragectury corvesponded roughly to dew . i i - i
viations of 0, 24%; weighting on the control {angle I)SWNRANGE :l: 20 25
of attack) covreaponded roughly to 0, 25, with a '
havd vanstraint of 1,0, Terminal weightings cor-
vooponded roughly to position ervors of 0,003, & Figure 4. Trajectory inthe x-z plane,.
vory lavge allowable animuth deviation and a flight
path angle evvor of 0, 48, .
4 R
rr
Figures 4, 8, and 6 show the trajectaries, The . ' . 0 A 0 s
tirat perturhed trajoctory (IReration 1) came fairly B AR R - - o
¢lona to the final trajectory, The terminal flight & |- I .
path angle waa significantly different than the tar- gof TTTETULTT
got value of &, 617, Subsequent {torations improved < AT T -1
the trajectory as Indicated in Table &, After the ol f {4} 1o —
ihird Lteration, the differonces between the actual 2L |
and targotad tavminal conditions were reasonably 0 55 7B I
amall: downrange srror = 0, 00156, crossrange ’ DbWNﬂANGE /
ervor = 0, ilight path angle errar = 0, 006, X
Fi - i
The flight time of 6, 145 sec and speed of gure 5. Trajectory in the x.y plane,
0, ¢819/woc at the last {teration, compared to the
nonmaneuvaring values of 3, 998 sec and 0, 3925/
sog, demonatrates the trade -off between the ma- . - R
neuvering and nonmaneuvering cases, . y
o LTI conoimons SHowN i TsLe 2 TTT 1] -
Table 2, Specified Larget — no acceleration > 20 111 ”
constraint 3
g M i
1§ ]
& CF - %
Test Conditions = I8 g —+—
219 N -
@ N 1
Imitial Gonditions: - N
05
Ny @0y =0 ayaey/hs 10 0 04 08 17 16 20 24 28 32 36 40 44 49 57 5§ 60
so/h 2 0,593 aec, vo = 0, Y, = 1,309 TIME. sac
Woighting Matrices: Figure 6. Flight path angle.
Qqq ® Qg # 20/t - t ), RY} = R35 = 0,01 (¢« ¢ )
- -5 210°3 ¢ -
Sn"szz"sn ax1i0 ,3‘44 10 .555 20 o
5 045
All Other Elements = 0 é 0.4[][
Control Conatraint: X 03
o
CONDITIONS SHOWN N TABLE
Ynax w0 Ymax a © one g 040
= 0.5/ T
Terminal Itoration No. Target 2 0.20H
Canditions 0 i 2 3 Condition =z
§ 0.16
x/h 1. 73207 2.50873 2.49833 2,49843 2, 50000 Z 00 \ ]
b o -4 | |
y/h 0 0.33220 0,33327 0.33333  0,33333 = 005 i
2
Yie 1,30y 2,425 2,603 2,62¥ 2,617 5 ’ "
£ 0080 s
Timu, sec  3.998  6.119 6,125  6.125 = 0 04 08 12 16 20 24 28 32 36 40 44 48 57 56 60
TIME, sac
Sec«dlh. 0, 3925 0,2924 0,2878 0,2819 --- .
17880 Figure 7. Horizontal control.
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Improvements in flight time and final speed could
have been made at the expense of larger terminal
errors in position or angle,

Figures 7 and 8 show the control furctions.
The first iteration appears rather ragged due to
the discretization method (sampling of 0, 1 -sec
intervals), The control uj is the angle of attack
in the horizontal plane, and up the angle of attack
in the pitch plune. At no nmv. was the 1,0 con-
straint reached,

Figure 9 nhows a typical element Py of the
P matrix in the solution of the Riccati cquation,
The molution goes {rom left to right, with the time
axen labeled with a minua afgn, The P onatrix ix
significantly different between the firat fteration
and subsequent tterations, Flgures 10 and 11
show the solution to the auxiliary control vector k,
The first solution s very large compared to the
subaoquent nolutions, as might be expected, since
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this function is related to the error between an 10 IHEENENENEEREEn
interim and the solution trajectory, - 1

Figures 12 through 14 show three elements of 0811 CONDITIONS SHOWN N TABLE 1]
the (2 %X 5) gain matrix K, The three elements < = NN
are Kz|, Kz3, and K35, which are the vertical 108 o I
control gains for x, z, and Y errors, respectively.
An interesting fact is that the gain K3 is mostly
of opposite polarity for Iterations 2 and 3 as com-

pared to Iteration 1, 02

ALTITUDE,
=
o~
4

Specified Target and Terminal Flight Path Angle — 0 -
Angle of Attack and Acceleration Constraint

05 R 15 ] 25
DOWNRANGE, wh

A more realistic test case is ons that is limited
both in maximum angle of attack and normal accel -
eration, An in-plane target was selected to exa- Figure 15, 'Trajectory in the x-z plane,
mine the R matrix adjusting algorithm, constraint problem,

Conditions for this case and computed results
are listed in Table 3. Figures 15 through 1§ are
computer -generated plots of trajectory data.

T |
CONUITIONS SHOWN IN TABLE 3

?T

The initial weighting matrices were the same
as in the previous case, except that out-of-plane
parameters were ignored, Figures 15 and 16
show the trajectories. The first perturbed tra-
jectory came fairly close to the terminal target
position, but the terminal flight path angle error
was large as seen in Figure 16 and Table 3. An O T e RT A 28 3T 360 a6 57 5655
identical case had previously been tried with no TIME. sec
acceleration constraint (not reported herein), and ’
the terminal flight path angle error was consid-
erably smaller on the first iteration, Subsequent
iterations improve the trajectory as indicated in
Table 3. After the fourth iteration, the differences
between the actual and targeted terminal conditions

Py
N

&
/

-

FLUGHT PATH ANGLE, r/a

(=3
o

n

Figure 16. Flight path angle,
constraint problem,

were small: downrange error = 0, 00073, flight-path o
503 I
5 N N -
Table 3. Specified target — acceleration = 11
constraint = gq[ 1 CONDITIONS SHOWN IN TABLE 3 771
g B J11
b= s
Test Conditions =3 0.1
é . 4 + —A—t~
= \ - N 17
Initial Conditions: & . T1:
g - -
Xy =0 Yo =0, 25/h = 1.0 Z TS T
2004 4 44 4 REEEREANS YN
sg/h = 0.593/sec, W, = 0, Y = 1.309 g~ REEAN .
INAREREED
é 0 04 08 1.2 14 16 20 24 28 32 36 40 44 48 52 56 60
Weighting Matrices: TIME, soc

a1, -1
Quq = Qg =20/t -t ), R, =R, 7 0,01 {t, -t ) .
4TS £ et ez o Figure 17. Vertical control, constraint

- -5
5yy %8,;%8,,52x107°, 5, a8, =20 problem,
All Other Elements = 0
Control Constraint: ?800[’4 T I TTT “‘Ff 1L T rl
- - . 2400 FH1—1 4 - +-4 - + —F - +
Ynaxe® 0 Ynacafes0-i6att=o i ettt B T T
2000 -+ -4 4 .1_ S U U 1
. o 1] 1 NENRNRENERR.
Terminal lteration No, Target B O 1] T CONDITIONS SOWN I TBLES ||
Conditions 0 I 2 3 4 Condition <1200 B B e ek R X N S A S O O
@ T W A PR S $— 44 -4 o 4--4- -4
m—v—j—l[—{-—iv B R R I R EE = = T [ N A N S % OV )
x/h  ft  1,73207 2,50377 2,50530 2,50133 2.50073 2,5000 1 1 1] BEERENRS
4 f— 44 —4—1- {- 4
y/h &t ¢ 0 0 0 0 o ‘0(1‘ T T
-BO-56-52~48-44 -40-356-32-28-24 -20-16-12-08-04 0
Yo rad 309 1,713 1.854 1,921 1.939 1. 950 NEGATIVE TIME, sec
Time, sec 3,998 5,856 5.87! 5. 974  5.876 -
Speed/h, 1
1 /seoc 0.3925 0.33307 0.3313 0.3310 0,3310 - Figure 18. An element of the R matrix,

Ry = RZZ'
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angle error = 0,011, Referring to Table 3, we
see the final flight path angle approaching the
targeted value with very small changes of flight
time or final speed showing the effectiveness of
the R weighting matrix.

Figure 17 shows the control function, Because
of 0, 16 constraint, the magnitude of uz is

limited to about 0, 16 at the start and again
toward the end of the flight. As R is adjusted
between iterations, the boundary riding portion of
the trajectory is extended, from about 1.0to 1.2
sec at the start and from 5.4 to 4.8 sec toward
the end. Wb can clearly see the control going
from a proportional controller to a bang-bang
type, which is known to be optimal for certain
types of problems, Figure 18 shows one element
of the R matrix for this case, Initially R is con-
stant, about 25 (R{} = 0.01 (4)). After the first
iteration, we see R growing at the extremities of
the trajectory, where the proportional controller
is requesting a control magnitude greater than the
prescribed limit.

Conclusions

This paper demonstrates that reentry trajec-
tories can be designed using linear optimal con-
trol theory and a method of successive lineariza-
tion. A unique feature of successive linearization
is the ability to adjust the weighting matrices
between iterations to shape the trajectory to meet
specified requirements. An algorithm for com-
puting values of the R weighting matrix gives an
improvement over the trial-and-error methods
that have previously been used,

- A more general aspect of the paper is the devel-
opment of a method of applying optimal control
theory to nonlinear problems. We have not proved
that the solutions using successive linearizations
will converge. When they do converge, we have

{3

not proved that the solution is optimal in any
sense. We have shown, however, for the cases
considered, that by proper choices of the penalty
function weighting matrices a solution can be
made to converge to a trajectory having desirable
specified terminal properties.
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